
1

From analysis to design: A new computational strategy for

structural creativity

Caitlin Mueller
*
 and John Ochsendorf

caitlinm@mit.edu, jao@mit.edu

Building Technology Program, Massachusetts Institute of Technology, United States

Abstract: Since the introduction of finite element analysis software in the 1970s, structural engineers have

become increasingly reliant on computational tools to carry out sophisticated simulations of structural

performance. However, most structural analysis tools can only be used once there is a structure to be analyzed;

they are not directly applicable in the design or synthesis of a new structural solution. This paper presents new

research that expands the applicability of computation from structural analysis to structural design, with an

emphasis on conceptual design applications. Specifically, this paper introduces a new interactive evolutionary

framework implemented in a web-based structural design tool, structureFIT. This approach enables users to

explore structural design options through an interactive evolutionary algorithm, and to further refine designs

through a real-time analysis mode. This paper includes a critical background on optimization and its applications

in structural design, an overview of the original interactive evolutionary framework, a description of the design

tool, and a discussion of potential applications.

Keywords: conceptual structural design, structural optimization, computation, evolutionary algorithms

Introduction

Conceptual Design of Architecture and Structures

In building design disciplines, including architecture

and structural engineering, the design process is

conventionally divided into four sequential phases:

Conceptual Design, Schematic Design, Design

Development, and Construction Documents. In

practice today, major decisions regarding the

building’s geometry, massing, and overall form are

usually made during the first phase, Conceptual

Design (Hsu and Liu 2000; Wang et al. 2002). This

phase is typically carried out by the architecture team

alone, before strong involvement of engineering

consultants.

Figure 1. Relationship between design freedom and

design knowledge in building design projects. After

Fabrycky and Blanchard (1991) and Paulson (1976).

After the project has already taken shape,

structural engineers and other consultants typically

begin work, with the task of developing engineering

strategies to enable the conceptual design vision, as

illustrated in Fig. 1. This means that in standard

practice, structural considerations are often

subservient to architectural goals (Macdonald 2001).

The design process is necessarily linear and

unidirectional, and there are few opportunities for

structural input to inform or improve the initial

concept in significant ways (Holgate 1986).

Significance of Structural Form

History, theory, and nature show that for structural

performance, overall form matters much more than

material, member sizing, or internal topology

(Thompson 1942; Zalewski et al. 1998; Larsen and

Tyas 2003; Allen and Zalewski 2010). The geometry

of a building’s structure directly determines the

distribution and magnitude of the forces it must resist

(Macdonald 2001). Uruguayan structural designer

Eladio Dieste (1917 – 2000) is quoted in an elegant

expression of this point: “The resistant virtues of the

structures that we seek depend on their form; it is

through their form that they are stable, not because of

an awkward accumulation of material. There is

nothing more noble and elegant from an intellectual

viewpoint than this: to resist through form” (Zalewski

et al. 1998).

Today, with advances in a broad range of

technologies, it is possible to design, analyze, and

build forms regardless of their structural performance

(Addis 1994). In fact, there is a recognized ingenuity

time into design process

p
er

ce
nt

a
g

e

conceptual

design

schematic

design

design

development

construction

documents

100%

design

freedom
design

knowledge

involvement of

structural engineers

2

in meeting the challenge of making a structurally

poor forms work in spite of their inefficiencies

(Macdonald 2001). However, this does not mean that

this is the best way forward. This paper argues for

and presents an alternate paradigm in which

structural considerations are integrated into the

form-making phase of the design process, conceptual

design.

Existing Computational Design Tools

Today’s architecture and engineering practices make

widespread use of computational tools throughout the

design process, and currently available tools both

reflect and enforce existing design paradigms (Hsu

and Liu 2000; Wang et al. 2002).

Geometry-based Tools for Architects

Architecture tools, starting with Computer-Aided

Drafting programs in the 1980s, allow users to

thoroughly document, and more recently generate,

both conceptual and detailed designs. An increasing

interest in complex geometry has led to powerful 3D

modeling software which, coupled with scripting

capabilities, enables the development of impressively

complex forms.

Analysis-based Tools for Engineers

Computational tools for structural analysis mirror

architecture tools in their power and capacity for

complexity, and yet also maintain existing design

roles. Finite element analysis (or FEA) programs are

capable of determining stresses, deflections, and

dynamic behavior for highly complicated geometry

using very sophisticated techniques. Recent

developments focus on increased accuracy and speed

under a range of conditions. However, these tools are

of little use in conceptual design; they require a

geometry be provided to be analyzed, and are

incapable of assisting with geometry generation.

Again, these tools relegate engineers to the tasks of

verifying the form and sizing the members, thus

limiting or eliminating their involvement in

conceptual design.

Key Structural Design Tool Features

The emerging research area of computational

structural design tools seeks to bridge the gap

between these existing computational approaches,

enabling a true integration of structural input during

conceptual design. This paper identifies two key

types of features for such tools, feedback and

guidance.

Feedback Features

A clear remedy for the lack of performance

evaluation in geometry-generation tools is to

integrate structural analysis capabilities into such

software. It is critical that such analysis be fast, or

ideally real-time, to allow for an interactive user

experience. This type of feature shows users how

design changes will affect structural performance

according to metrics such as required material

volume, structural stiffness, or estimated construction

costs. This has been implemented in a number of

applications both in research and practice, but is

limited by the speed of computational structural

analysis.

Guidance Features

To shift engineering software from the existing

analysis and verification focus, tools for structural

design should include form-guiding capabilities. This

type of feature enables the software to suggest new

geometries to the user in order to improve the

structural performance of a design concept. While the

field of optimization offers insight into ways to

achieve this, there has been little progress in

developing guidance-based tools for conceptual

design both in research and practice. To truly

encourage integrated conceptual structural design

through modern computational tools, it is critical that

methodologies that achieve this functionality be

further developed.

Optimization in Structural Design

Structural optimization is a promising field with a

rich history, but has nevertheless yet to make a

significant impact on structural design in practice.

This section explains the development of structural

optimization theory and discusses the reasons for its

disconnect with design.

The history of structural optimization can be

traced back to Galileo Galilei (1564 – 1642), who in

1638 determined the optimal shape of a cantilevered

beam subjected to a point load at its free end

(Timoshenko 1953; Heyman 1998). By finding the

parabolic profile, as illustrated in Fig. 2, Galileo

showed that mathematics can be used to find forms

that use material as efficiently as possible to support

a given load. For many years since, this has been the

goal of structural optimization.

Figure 2. Drawings from Galileo’s Dialogues

Concerning Two New Sciences (1638), showing in (a)

an incorrect linearly varying solution for the optimal

shape of a cantilevered constant-width beam

supporting a point load at its tip, along with (b), the

correct parabolically varying solution (Timoshenko

1953).

3

Since Galileo, scholars have solved a steady

stream of increasingly complex structural

optimization problems (Wasiutynski and Brandt

1963). One of the most well-known contributions

comes from Anthony G. M. Michell’s work on

another cantilever problem almost three hundred

years after Galileo’s original work. Michell showed

how to find an optimal truss solution for the

point-loaded cantilever problem (and a few others) in

his seminal 1904 paper, “The Limits of Economy of

Material in Frame-structures.” Like Galileo, Michell

was looking for minimal-material analytical solutions

for key canonical problems, rather than offering a

general approach for optimization of any structure.

(Timoshenko 1953; Heyman 1998).

A more general approach that resembles

methods in use today was developed in the 1960s,

with critical work by Schmit (1960). A cohesive

overview of work since is given by Spillers and

MacBain (2009). In contrast with the analytical

methods of scholars like Galileo and Michell, the

new numerical methods attempted to find the

optimum by iterating through potential solutions in a

systematic way (Kirsch 1981). While iterative

approaches were practically impossible in the days of

manual calculation, the newly developed computers

brought rapid calculations for large problems to

reality.

Figure 3. 25-bar trussed tower with member cross

sectional diameters and wall thicknesses chosen by

an optimization algorithm (Fox and Schmidt 1966).

Importantly, structural optimization researchers

in the 1960s referred to their discipline as structural

synthesis (Schmit 1981; Vanderplaats 2010),

revealing the early aspirations of the field and

evoking ideas of design in its truest sense: creating

something new. However, the work actually dealt

with choosing member cross sections for

predetermined geometries and member

configurations (Fox and Schmit 1966). For example,

Fig. 3 shows a three-dimensional truss tower with 25

elements, whose cross sections were selected using a

numerical weight minimization algorithm. This type

of problem is referred to as size optimization. While

improvements since the 1960s have broadened the

reach of structural optimization strategies, the general

disconnect between the goals and reality of structural

optimization persist still today. In short, although

structural optimization aims to generate new and

exciting forms, most applications are limited to rather

narrow problem spaces.

An important step forward in structural

optimization was the development of shape

optimization, or the determination of overall

structural form as opposed to element sizes

(Vanderplaats 1982; Bennett and Botkin 1986; Haftka

and Grandhi 1986). Most applications of this early

work were in structural design of components in the

automotive and aerospace industries, where an

improved part would be used hundreds or thousands

of times, yielding extensive savings, although there

are also examples of shape optimization for trusses,

sometimes called geometry optimization. Because it

deals with overall form, shape optimization is more

relevant to conceptual design than size optimization.

The third type of structural optimization used

today is topology optimization, or the optimal

connective arrangement of elements in a structure,

developed numerically in the late 1980s (Bendsøe

and Kikuchi 1988; Rozvany 2001; Rozvany 2007).

This type of optimization can also be integrated with

shape optimization and size optimization.

Specific methods have been developed to

address each of the three classes of structural

optimization problems, but in general they share a

common formulation, described in the following

subsection.

Optimization Problem Formulation

Formally, structural optimization is a numerical

method of finding the best solution according to

mathematically formulated functional requirements,

or objectives, while conforming to mathematically

formulated constraints. The solution is expressed in

the form of numerical values for a design vector, x,

which represents a list of design decisions to be made

– for example, nodal positions, material selections,

cross sections – called design variables.

The objective function, f(x), is often a

calculation of the weight or volume of the structure,

such that a minimal-weight structure can be found.

However, this function can also consider stiffness,

strain energy, deflection, or other quantitative goals,

structural or otherwise. The constraints, g(x) ≤ 0 and

h(x) = 0, and the variable bounds, xi,lb and xi,ub,

restrict the solutions according to design or

behavioral requirements. More specifically, design

constraints can represent geometric or spatial

requirements, constructability or fabrication

limitations, or other functional considerations.

Behavioral constraints set limitations on structural

4

behavior, and include restrictions on performance

metrics like internal stresses, deflections, or buckling

capacity (Kirsch 1981).

Together, the design vector, constraints,

variable bounds, and objective function define a

design space, or solution space, for a given problem.

The dimension of this space is given as one more

than the number of design variables, to represent the

space of possible design vector values and their

resulting objective, or performance, values. Structural

design problems often have design spaces that are

large and complex, although the exact nature of the

design space depends on the specifics of the problem.

Limitations of Optimization in Design

Despite the rich academic history of structural

optimization, it has had relatively little impact on

structural engineering in practice. Fundamentally, this

can be attributed to an inherent difference in goals

between optimization and the design of buildings.

While optimization is necessarily a convergent

process, or one in which an iterative and systematic

algorithm converges upon a single solution, design is

decidedly divergent. In design, it is recognized that a

variety of significantly different yet suitable solutions

can be found from a single starting point.

Moreover, the exercise of mathematically

formulating objectives and constraints is difficult or

impossible in the design of buildings. Many goals

and requirements are qualitative, or even subjective,

such as visual impact, spatial experience, contextual

fit, and overall architectural value. Since most

structural design cannot occur in the absence of

architectural goals, this presents a significant

challenge.

In addition, the design process for buildings is

often one of discovery: designers do not know all of

their objectives and constraints at the beginning of

the process, but develop them as they explore design

possibilities. The designer’s interaction with the

process of evaluation and iteration is key. In contrast,

standard optimization is a relatively rigid and

automated process in which goals and requirements

must be enumerated completely at the start. Unlike

the human design process, optimization on its own

cannot handle unformulated objectives and

constraints.

Finally, most structural designers lack intensive

training in optimization, and there are few tools or

approaches available that make optimization

accessible to non-experts. Furthermore,

optimization tools that do exist are often text-based or

severely limited in their graphical displays, and often

rely on piecing several pieces of software together.

Human designers are necessarily highly visual, and

can process and evaluate information much more

quickly and fully when it is presented graphically.

Therefore, in order to be useful for designers in

practice, tools that use optimization should be easy to

use, integrated, and strongly graphical.

Interactive Design Space Exploration

Given the issues with standard optimization in

conceptual structural design, it is necessary to look

beyond the established approaches to find ways to

bring computational design guidance to conceptual

design tools.

Interactive optimization addresses this issue in

a simple but compelling way: the designer is allowed

to interact with the computer algorithm in deciding

which designs to pursue in the iterative optimization

process. The exact mechanics of the interaction

depend on the specific algorithm chosen. In general,

the interactive element allows the user to only

partially formulate the design problem in a

quantitative way, and to use unformulated or newly

discovered objectives and constraints to make design

selections.

Interactive Evolutionary Algorithms

Evolutionary algorithms are a general class of

optimization strategies that use the principles of

Darwinian natural selection to grow and evolve

populations of designs. They have the advantages of

being robust and well-suited to complicated

engineering problems. Because they incorporate

randomness, they avoid getting stuck in local optima,

and can effectively hop around the design space in

search of better solutions.

Furthermore, because they work with

populations of candidate designs, evolutionary

algorithms are especially useful in promoting design

diversity. Unlike algorithms that focus on improving

singular solutions, these algorithms improve a group

of alternative options as they iterate. The general

procedure is to randomly initialize a first generation,

evaluate the fitness of each member of the generation,

identify the top performers, and use those to create a

subsequent generation by combining and mutating

them. In standard evolutionary algorithms, the

process runs automatically until preset criteria are

reached, and a single solution is presented as the

optimum. However, it is also possible to take better

advantage of the design diversity created by this

approach by incorporating human interaction.

On their own, evolutionary algorithms are

subject to the same criticisms as other standard

optimization approaches, as detailed previously.

However, because of their population-based approach

and selection mechanics, evolutionary algorithms

lend themselves particularly well to human

interaction. Interactive evolutionary algorithms are a

subclass of optimization algorithms that use

principles of evolution combined with human input to

drive design space exploration. The general iterative

5

process for this type of algorithm is illustrated in the

diagram in Fig. 4. The cycle differs from standard

evolutionary algorithms at the design selection step.

The algorithm identifies top performers, but solicits

input from the user to make final choices about which

designs to proceed with to form the subsequent

generation. This key difference allows the designer to

adjust the optimization process based on

unformulated goals, such as visual impact or

constructability requirements. Furthermore, the user

may adapt goals across generations, based on newly

realized design criteria discovered in the explorative

process.

Figure 4. General diagram of an interactive

evolutionary algorithm, including the interactive step

highlighted in blue.

The first interactive evolutionary algorithms

were developed in Sims (1992) for the purpose of

finding visually interesting cellular automata. In this

early case, selection was entirely based on user

preferences, rather than on a combination of user

preferences with calculated objective functions. The

literature includes many subsequent examples of this

strict type of interactive evolutionary algorithm,

including for the design of web pages (Oliver et al.,

2002) and coffee blends (Herdy 1997).

Contributions from Parmee and collaborators

led to some of the first interactive evolutionary

algorithms that used both computation and human

input to drive selection (Parmee 1997; Parmee and

Bonham 2000; Parmee 2001). Unlike the earlier

examples, which focused on design problems with

highly subjective performance metrics, this work is in

the realm of engineering, which has both quantitative

and qualitative goals. This work laid the foundations

for further research in the applications of interactive

evolutionary computation to structural design.

More recently, some progress has been made in

applying interactive evolutionary computation

specifically to the realm of structural design. Most

notably, von Buelow has proposed an interactive

genetic design tool for creative exploration of design

spaces, including for the design of trusses (2008) and

folded plate structures (2011).

Specific Needs

Existing work suggests specific challenges to be

addressed by a new interactive evolutionary

framework. First, existing approaches implement

interactivity in limited ways. Interactive features

should be expanded to allow more incorporation of

requirements and criteria from the designer. These

features can also help the designer direct exploration

of the design space in a more precise way, further

improving the effectiveness of an interactive

evolutionary approach.

Additionally, existing research treats interactive

evolutionary algorithms as a stand-alone approach

without considering the broader user design

experience. There is a need to incorporate general

problem setup strategies and design refinement

functionalities into an expanded approach, along with

the evolutionary approach itself.

The framework presented in this paper is a

novel holistic approach that generalizes the use of

interactive evolutionary algorithms in conceptual

structural design, and also addresses these specific

needs.

Interactive Evolutionary Framework

This section introduces a novel framework that

adapts a generalized interactive evolutionary

algorithm for conceptual structural design, as well as

its implementation as a software tool. Detailed

descriptions of specific original features of the

framework are discussed more fully in subsequent

sections.

Framework and Software Architecture

Existing work suggests specific challenges to be

addressed by a new interactive evolutionary

framework. First, existing approaches implement

interactivity in limited ways. Interactive features

should be expanded to allow more incorporation of

requirements and criteria from the designer. These

features can also help the designer direct exploration

of the design space in a more precise way, further

improving the effectiveness of an interactive

evolutionary approach.

The software implementation of this framework

reflects its generalized nature. The program is written

in C#/.NET (Microsoft 2012), an object-oriented

programming language, and is designed to be

modular and extensible. There are four general types

of backend classes: variables, design models,

structural analysis engines, and the interactive

evolutionary algorithm population generator. The

population generator connects with a graphical user

interface to allow input from the user. The interaction

of these parts is illustrated in Fig. 5.

6

Figure 5. Software architecture diagram for the

interactive evolutionary framework, illustrating main

class types and interactions.

This diagram shows the versatile nature of the

framework. Variables, design models, and analysis

engines are all designed using interfaces, meaning

that each can be implemented as a variety of types.

For example, variable types can be horizontal and

vertical nodal positions, but they could also be

material properties, joint fixities, member topologies,

or other design decisions. Design models can be truss

structures, again as introduced previously, but they

could also be frame structures, continuous solid

structures, or other structural types. A design model

type must have one or more analysis engine type that

can apply to it. For example, truss structures are

associated with a truss analysis engine, but could also

be analyzed by more detailed analysis engine types.

Examples of variable types, design model types, and

analysis engine types are presented in the following

subsections.

The population generator works with a

particular design model type and a particular

associated analysis engine type. Using the design

model and its variables, it creates a generation

through crossover and mutation. Using the analysis

engine, it applies a fitness score to each candidate

design. It then presents the best designs to the user

through the graphical user interface, which also

allows the user to make selections. These selections

are sent back to the population generator, which

produces a new generation.

Variables and Design Models

As discussed in the previous subsection, the

interactive evolutionary framework supports multiple

variable types and design model types. To illustrate

how these classes work, the example of a truss design

model with variable nodal positions will be used. Fig.

6 shows a seven-bar truss with three design variables.

The truss model is defined by its nodes and members.

Nodes are defined by degrees of freedom, which have

coordinates, loads, and supports. In this

two-dimensional case, nodes have two degrees of

freedom. Members are defined by their start and end

nodes and their material properties. Like all design

model types, the truss model also has a vector of

variables. This is the model’s design vector, or

parametric representation.

Figure 6. A planar seven-bar truss design problem

with three design variables: the horizontal and

vertical positions of the lower left node (n2), and the

vertical position of the central node (n4). This truss is

simply supported, has a central point load, and is

bilaterally symmetrical.

In this type of design problem, the coordinate

of each degree of freedom can be a variable. Any

variable type must have defined upper and lower

bounds. In this case, the upper and lower bounds are

the allowable range for the coordinate, illustrated in

Fig. 6 with the dashed rectangle for node 2 and line

for node 4.

Additionally, any variable type must implement

analogues of the biological concepts of crossover and

mutation. Conceptually, crossover combines encoded

information from more than one parent to create

offspring that have traits from each of them. Mutation

then randomly perturbs the newly formed offspring in

order to encourage diversity. For this example, the

implementations of mutation and crossover are given

in Eqs. (1-6), and apply to continuous variables in

general beyond the degree of freedom coordinate.

Crossover is accomplished through a weighted

average of seed variable values with random weights.

Mutation updates a variable value with a random

variable from a normal distribution with a standard

deviation related to the variable’s allowable range

and set mutation rate. For discrete or integer

variables, these same approaches can be used with

minor modifications.

Design Models
• Geometry

description

• Loads, boundary

conditions, material

properties

• List of variables

Variables
• Upper and

lower bounds

• Crossover

implementation

• Mutation

implementation

Population

Generator
• Create random

populations

• Evaluate, rank,

and identify

top performers

Analysis

Engines
• Given a design

model, determine

a score based on

structural

behavior

Graphical User

Interface (GUI)
• Show user top

performing

designs

• Allow user to make

design selections

BACKEND FRONTEND

7

Crossover: 𝑥crossed =
∑ 𝑥𝑖𝑤𝑖

𝑛
𝑖 = 1

∑ 𝑤𝑖
𝑛
𝑖 = 1

 (1)

Mutation: 𝜇 = 𝑥crossed (2)

𝜎 =
|𝑥ub−𝑥lb|

2
𝑟mutation (3)

Normal distribution: 𝑓(𝑥; 𝜇, 𝜎2) (4)

𝑥rand = rand(𝑓) (5)

𝑥mutated = min(max(𝑥rand, 𝑥lb), 𝑥ub) (6)

The framework also supports parametric

relationships between variables and non-variables.

For example, the truss design model presented here

allows for mirror and offset relationships between

degree of freedom coordinates. The former is

illustrated in the problem shown in Fig. 6, which uses

bilateral symmetry to define the position of the lower

right node (n3) based on the position of the lower left

node (n2).

Analysis Engines

Design model types must be associated with at least

one analysis engine type, although the framework

supports the use of multiple analysis engines. Any

analysis engine must determine a quantitative fitness

score for a given design model, based on structural

criteria. For example, in the case of the truss model, a

truss analysis engine can find the required volume of

a structure with a given geometry, loading, and

support conditions. The engine calculates this metric

as follows: compute the forces in each member using

the direct stiffness method, assign required cross

sectional areas to each member based on allowable

stress and buckling considerations, and find the sum

of the area lengths times their required areas.

The code for this truss analysis engine was

written from scratch, using the open-source

Math.NET numerical analysis library for matrix

operations (Math.NET Project 2012). However,

analysis engines could also make use of commercial

structural analysis codes. An important note is that

for statically indeterminate structures, this particular

process is affected by initial member sizes used to

compute forces. In this case, optimal member sizing

can be computed through iteration, or an approximate

result found through initial equal member sizing can

be accepted.

Population Generator

The population generator in this framework

implements a simple and flexible interactive

evolutionary algorithm that can be easily controlled

by the user and adapted to a wide range of variable,

design model, and analysis engine types. As

explained previously, the interactive evolutionary

algorithm is an iterative approach that can be

repeated until the user is satisfied.

The first step of the algorithm is to generate a

random population of a preset number of candidate

designs. For the first generation, this is based on

random perturbations from an initial structure defined

by the user. Specifically, for each candidate design in

the new generation, each design variable is mutated

from initial values from the user-defined initial

structure. Mutation is carried out in the manner

previously discussed, and illustrated in Eqs. (2-6) for

the example of continuous variables.

Next, the algorithm uses the analysis engine to

assign a fitness score to each candidate design. The

algorithm then sorts the designs according to this

score and presents a top-performing subset of designs

to the user through the graphical user interface. The

user is then able to visually evaluate the designs and

choose those that best meet the qualitative or

otherwise unformulated goals for the design process.

The designs that the user chooses are used as seeds

for creating the next generation in the iterative

process.

The seeds are used to form a new generation

using the previously discussed crossover and

mutation functionalities. The newly formed

generation of new candidate designs is then evaluated,

sorted, and presented again, and this process can

continue as long as the user wishes. There are also

several ways for the user to interrupt the process. If

the user does not like any of the presented designs, or

wishes to make changes to designs previously

selected, the user can return to a previous generation,

adjust selections, and rerun the algorithm from that

point. Also, the user can choose to select no designs,

and the algorithm will reset and start with the

previously defined initial structure once again.

User Experience and Interface

The framework described above has been

implemented in an interactive proof-of-concept

design tool called structureFIT (Mueller 2013). The

following sections describe the graphical user

interface and general user experience.

Graphical User Interface (GUI)

The graphical user interface (GUI) enables the

interactive step of the interactive evolutionary

algorithm by showing the user top-performing

designs graphically and allowing the user to make

selections. The GUI is implemented using Silverlight,

a platform-agnostic technology that supports

interactive user applications that run in a web

browser (Microsoft 2012). There are several

advantages to this approach, in comparison with

traditional desktop applications or integration into

8

existing software. First, the program is highly

accessible: anyone with a web browser can use it,

regardless of operating system, and there is no need

to download or install it. Second, there is no need for

the user to own other commercial software, such as

Rhino or AutoCAD, to run the program, and the

program is not tied to software trends, which tend to

change relatively quickly in the architectural

computation realm. Finally, the web-based interface

lends itself naturally to analysis calculations on

remote servers. While all calculations are currently

executed on the client-side, or on the user’s computer,

future use of server-side calculations through remote

resources or cloud computing could significantly

improve performance.

Figure 7. Screenshot of the web-based graphical user

interface, showing the evolution of solutions for the

design problem presented in Fig. 6.

Figure 8. A closer view of several candidate designs

created by the population generator and presented to

the user, with scores normalized by a base design’s

score shown underneath each.

A screenshot of the GUI is shown in Fig. 7. It is

designed to be simple and user-friendly, while still

allowing for powerful user control. The main feature

of the interface is the matrix of designs, shown in

numbered rows. Each row represents a generation

created by the population generator, and the designs

shown are the top ten performers. The number under

each design corresponds to its score, normalized by

the score of a base design, which is shown, along

with the initial design, in the upper left-hand corner

of the interface. Designs with scores less than 1.00

perform better than the base design, and those with

scores higher than 1.00 perform worse. A closer view

of generated designs and their scores is shown in Fig.

8. After each generation is produced, the user is able

to select zero, one, or more designs by clicking on

them, and selected designs are indicated with a gray

square. The user then clicks the main “generate”

button to produce a new generation.

The user can return to a previous generation by

clicking the “<” button next to the corresponding row.

This will erase the designs generated since, and the

user can change the selected designs and rerun the

computation. The user can also adjust the mutation

rate and population size for each generation, and can

choose to turn on a hybrid approach that

automatically computes several generations in a row.

These features are discussed in more detail in

subsequent sections.

Expanded User Experience

In addition to the interactive evolutionary design

experience, this framework includes original

functionality that can be used before and after. Before

evolutionary design exploration, the user can set up

the design problem by drawing in a graphical and

intuitive user interface. This makes the framework

general beyond specific examples. After the

evolutionary design evaluation, the user can refine an

evolved design using real-time performance feedback.

These additional features help bring this framework

beyond an algorithm and toward an approach usable

for real design problems.

The design setup mode allows the user to

define a design problem by building a structural

model and identifying variables. The user can draw a

structure by clicking and dragging to create nodes

and members on a canvas, or by modifying entries in

an adjacent spreadsheet. The user can then assign

loads and supports to defined notes, and define

variables, including upper and lower bounds. Finally,

the user can define planes of symmetry and

parametric relationships, including mirror and offset

relations. The information entered by the user is

updated dynamically in the graphical view of the

structural model. This functionality is illustrated in

Fig. 9.

Figure 9. Screenshot of the model setup mode, in

which the user can input a design problem, specified

by structural geometry, loads, materials, boundary

conditions, and variable definitions.

9

The user may also choose to open one of a

range of preset design examples that can be run

directly, or modified to adapt to new problems.

Additionally, the user can choose to save a custom

setup structure that can be opened again later in the

design session. Once the setup structure has been

finalized, the user can click the button in the upper

left of the screen to set it as the initial design for the

interactive evolutionary mode. If the structure is not

stable, or contains no loads or variable definitions,

the program will identify these issues for the user to

correct.

This setup mode is important because it makes

the interactive evolutionary framework both highly

flexible and easy to use. The framework is not tied to

any particular example or case study, and can be used

by designers for real design problems. Additionally,

the GUI for design input is powerful and user friendly,

so that designers can define problems quickly and

move on to exploring solutions in the interactive

evolutionary mode.

Figure 10. Screenshot of the design refinement mode,

in which the user can adjust designs found in the

interactive evolutionary exploration with real-time

performance feedback in terms of the overall score

and individual member sizing. The members are

drawn with required thicknesses shown to scale, with

blue indicating tension and red compression.

Once the user has found an interesting design,

it can be studied and refined further in the design

refinement mode. This mode allows the user to

graphically adjust variable settings for a selected

design to fine-tune its appearance, while also

receiving real-time feedback on the performance

implications of the adjustments. In the case of nodal

coordinate variables, the user is able to adjust the

nodal positions by clicking and dragging, and note

the change in the overall design score. The program

also instantly updates the required thickness of

individual members, shown graphically on the

members themselves and numerically in a

spreadsheet. The user is able to save particular

designs found in this design refinement mode and

return to them for comparison. Once an attractive

solution is found, the user can export it for use in

more advanced modeling and analysis software. A

screenshot of this design mode is shown in Fig. 10.

Like the model setup mode, the design

refinement mode adds crucial functionality to the

interactive evolutionary framework. By combining a

guidance-based approach with a feedback-based

post-processing step, the framework is able to expand

design freedom for users.

Conclusions

This paper has presented a general framework for

using interactive evolutionary optimization in

conceptual structural design. This work is important

because it helps enable a guided exploration of

structural design spaces, while still allowing for

creativity and freedom, addressing the issues found in

standard optimization previously identified.

This framework builds upon existing work in

interactive evolutionary algorithms and in structural

design tools, addressing specific issues that remain

unresolved in previous literature. The specific

contributions include the generalized approach for

interactive structural design as well as its graphical

and interactive implementation in the form of the

structureFIT design tool.

Applications

The framework and tool introduced here could

significantly improve conceptual design exercises in

practice, as a way to generate and compare a wide

range of design ideas quickly and easily. An architect

with basic structural knowledge could use the tool

alone or as a supplement to working with a creative

structural engineer early in the design process. A

structural designer could also use the tool to develop

innovative structural concepts to discuss with the

architect for further development. In a more

integrated approach, a team of architects and

engineers could use the tool together during

conceptual design, collaboratively developing design

alternatives that perform well structurally and achieve

architectural design goals. Finally, the tool could be

useful in facilitating discussions between designers

and clients, helping clients understand tradeoffs

between options and cost implications of design ideas

at the earliest stages.

Possible applications in the classroom mirror

those in practice: architecture students could use a

tool implementing this approach for exploring early

design options for studio projects, and engineering

students could use such a tool for engineering design

projects. However, the design tool also has additional

didactic potential for developing intuition for

structural behavior in architecture and engineering

students, a very important and increasingly neglected

10

aspect of education in both disciplines. For

engineering students, this tool could also offer a way

to encourage design creativity, another significant but

overlooked area. Furthermore, a tool used by students

from both disciplines together would foster

collaboration and improve students’

cross-disciplinary communication skills, which are

much needed in practice.

Figure 11. Robert Maillart’s 1924 design for a shed

roof in Chiasso, compared with designs discovered

using the computational approach presented in this

paper.

In addition to discovering design possibilities

for new projects, this approach could also be useful in

studying existing work within the context of a formal

design space. Most architectural history research does

not include detailed analyses on structural

performance, which can be of value in evaluating

success and identifying lessons to move forward with.

The design space strategies used in this approach

allow researchers to consider a historical work as a

point in a space of alternatives of varying structural

performance and formal attributes, potentially

gaining insights on design decisions and process. For

example, Robert Maillart’s concrete shed roof in

Chiasso, Switzerland, designed in 1924, is shown in

Fig. 11, along with related design alternatives

explored using the approach presented in this paper.

It is evident that there is a family of solutions of

varying performance, some of which share more in

common with Maillart’s design, which achieves a

constant force in the gable elements, and some less.

Such a study could provide a new context through

which designs could be analyzed, understood, and

revisited in the future.

References

Addis, B. (1994) The Art of the Structural Engineer.

London: Artemis.

Allen, E., and Zalewski, W. (2010) Form and Forces:

Designing Efficient, Expressive Structures.

Hoboken, NJ: John Wiley and Sons.

Bendsøe, M. P., and Kikuchi, N. (1988) Generating

optimal topologies in structural design using a

homogenization method. Computer Methods in

Applied Mechanics and Engineering, 71(2), pp.

197-224.

Bennett, J. A., and Botkin, M. E. (Eds.) (1986). The

Optimum Shape: Automated Structural Design.

New York: Plenum Press.

Computers and Structures. (2008). SAP2000 Version

12.0.0 Release Notes.

Fabrycky, W. J., and Blanchard, B. S. (1991)

Life-Cycle Cost and Economic Analysis.

Lebanon, IN: Prentice-Hall.

Fox, R. L., and Schmit, L. A. (1966) Advances in the

Integrated Approach to Structural Synthesis.

Journal of Spacecraft and Rockets, 3(6), pp.

858-866.

Haftka, R. T., and Grandhi, R. V. (1986) Structural

shape optimization--A survey. Computer

Methods in Applied Mechanics and Engineering,

57, pp. 91-106.

Herdy, M. (1997) Evolutionary Optimization Based

on Subjective Selection - Evolving Blends of

Coffee. Proceedings of the 5th European

Congress on Intelligent Techniques and Soft

Computing , pp. 640-644.

Heyman, J. (1998) Structural Analysis: A Historical

Approach. Cambridge, UK: Cambridge

University Press.

Holgate, A. (1986) The Art in Structural Design: An

Introduction and Sourcebook. Oxford:

Clarendon Press.

Hsu, W., and Liu, B. (2000) Conceptual design:

issues and challenges. Computer-Aided Design,

32, pp. 849-850.

Kirsch, U. (1981) Optimum Structural Design. New

York: McGraw-Hill.

Macdonald, A. J. (2001) Structure and Architecture

(2nd ed.). Oxford: Architectural Press.

Math.NET Project. (2012) Math.NET Numerics.

Retrieved from

http://numerics.mathdotnet.com/

Michell, A. G. (1904) The limits of economy of

material in frame-structures. Philosophical

Magazine, 8(47), pp. 589-597.

Microsoft. (2012) Introduction to the C# Language

and the .NET Framework. Retrieved from

Microsoft Developer Network (MSDN):

http://msdn.microsoft.com/en-us/library/z1zx9t

92.aspx

Microsoft. (2012) Silverlight. Retrieved from

http://www.silverlight.net

Mueller, C. (2013) structureFIT Design Tool.

Retrieved from

www.caitlinmueller.com/structurefit

Oliver, A., Monmarché, N., and Venturini, G. (2002)

Interactive design of web sites with a genetic

algorithm. IADIS International Conference

WWW/Internet, pp. 355-362.

Parmee, I. C. (1997) Evolutionary and adaptive

strategies for engineering design-an overall

framework. IEEE International Conference on

Evolutionary Computation, 1997, pp. 373-378.

11

Parmee, I. C. (2001) Evolutionary and Adaptive

Computing in Engineering Design. Springer.

Parmee, I. C., and Bonham, C. (2000) Towards the

support of innovative conceptual design through

interactive designer/evolutionary computing

strategies. Artificial Intelligence for

Engineering Design, Analysis, and

Manufacturing, 14, pp. 3-16.

Paulson, B. (1976) Designing to reduce construction

costs. Journal of the Construction Division,

102(4), pp. 587-592.

Rozvany, G. I. (2001) Aims, scope, methods, history

and unified terminology of computer-aided

topology optimization in structural mechanics.

Structural and Multidisciplinary Optimization,

21, pp. 90-108.

Rozvany, G. I. (2007) A critical review of established

methods of structural topology optimization.

Structural and Multidisciplinary Optimization,

37(3), pp. 217-237.

Schmit, L. A. (1960) Structural design by systematic

synthesis. Proceedings of the Second

Conference on Electronic Computation, pp.

105-122.

Schmit, L. A. (1981) Structural sythesis–Its genesis

and development. AIAA Journal, 19(10), pp.

1249-1263.

Sims, K. (1992) Interactive Evolution of Dynamical

Systems. Toward a Practice of Autonomous

Systems: Proceedings of the First European

Conference on Artificial Life, pp. 171-178.

Spillers, W. R., and MacBain, K. M. (2009)

Structural Optimization. New York: Springer.

Timoshenko, S. P. (1953) History of Strength of

Materials. New York: McGraw-Hill.

Vanderplaats, G. N. (1982) Structural

optimization—Past, present, and future. AIAA

Journal, pp. 992-1000.

Vanderplaats, G. N. (2010) Fifty years of structural

synthesis: Some musings from a disciple of

Schmit. 13th AIAA/ISSMO Multidisciplinary

Analysis Optimization Conference, pp. 1-8.

von Buelow, P. (2008) Suitability of genetic based

exploration in the creative design process.

Digital Creativity, 19(1), pp. 51-61.

von Buelow, P. (2011) Genetically Enhanced

Parametric Design for Performance

Optimization. 7th International Seminar of the

IASS Structural Morphology Group. London.

Wang, L., Shen, W., Xie, H., Neelamkavil, J., and

Pardasani, A. (2002) Collaborative conceptual

design -- state of the art and future trends.

Computer-Aided Design, 34, pp. 981-996.

Wasiutynski, Z., and Brandt, A. (1963). The present

state of knowledge in the field of optimum

design of structures. Applied Mechanics

Reviews, 16(5), pp. 341-350.

Zalewski, W., Allen, E., and Iano, J. (1998). Shaping

Structures: Statics. New York: John Wiley and

Sons.

